Bernstein and Nikolskii Inequalities for Erdős Weights

T. Z. Mthembu
Department of Mathematics, University of the Witwatersrand, P.O. Wits 2050, Republic of South Africa
Communicated by Paul Nevai

Received November 6, 1990; accepted in revised form August 6, 1992

$$
\begin{aligned}
& \text { Let } W:=e^{-Q} \text { where } Q \text { is even, sufficiently smooth, and of faster than polynomial } \\
& \text { growth at infinity. Such a function } W \text { is often called an Erdös weight. In this paper } \\
& \text { we prove Nikolskii inequalities for Erdós weights. We also motivate the usefulness } \\
& \text { of, and prove a Bernstein inequality of, the form } \\
& \left.\max _{x \in \mathbb{R}}\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{B} n}\right)^{2}\right|^{x}\left|\leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}}\right| P(x) W(x)\left|1-\left(\frac{x}{a_{B} n}\right)^{2}\right|^{x-1 / 2} \right\rvert\, \text {, } \\
& \text { for fixed } x \geqslant \frac{1}{2}, \beta>1, P \in \mathscr{P}, n \text { large enough and } C>0 \text { independent of } n, P \text {, and } \\
& x \in \mathbb{R} \text {. Here, } a_{n} \text { is the } n \text {th Mhaskar-Rahmanov-Saff number for } W \text {. } 1993 \text { Academic } \\
& \text { Press. Inc. }
\end{aligned}
$$

1. Introduction and Statement of Results

In recent years, attention has been given to Christoffel function estimates and L_{x} Markov-Bernstein inequalities for Erdös weights. See [4-6]. The extension of Markov-Bernstein inequalities to L_{p} requires the use of Nikolskii inequalities since Nikolskii inequalities give a relationship between metrics in different finite dimensional metric spaces of polynomials. Our Bernstein inequalities will be useful in the study of rates of polynomial approximation. Some of the ideas of proof of sharpness of the Nikolskii inequalities are those of Nevai and Totik [10]. The proof of our Bernstein inequalities uses results of Lubinsky $[4,5]$. Christoffel function estimates established by Lubinsky and Mthembu [6] are crucial ingredients of these proofs.

In this section we state our main results. We prove Nikolskii inequalities and Bernstein inequalities in Sections 3 and 4, respectively.

Throughout, $\mathscr{P}_{n}, n=1,2,3, \ldots$, denotes the class of real polynomials of degree at most n. Further, C, C_{1}, C_{2}, \ldots, denote positive constants independent of $n, P \in \mathscr{P}_{n}$, and $x \in \mathbb{R}$, which are not necessarily the same from line to line. We use the usual o, O, notation and \sim as in [3-6]: We write
$f(x) \sim g(x)$ if there exist C_{1}, C_{2} with $C_{1} \leqslant f(x) / g(x) \leqslant C_{2}$ for the specified range of x. Similar notation is used for sequences.

The classical inequalities of Markov and Bernstein are respectively

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{[-1.1]} \leqslant n^{2}\|P\|_{[-1.1]}, \quad P \in \mathscr{P}_{n}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P^{\prime}(x)\right| \leqslant n\left(1-x^{2}\right)^{-1 / 2}\|P\|_{[-1,1]}, \quad P \in \mathscr{P}_{n},|x|<1 . \tag{1.2}
\end{equation*}
$$

The interest in these inequalities lies in their application to rates of approximation by polynomials. Their weighted analogues are used similarly on rates of approximation by weighted polynomials. The most general analogue of (1.1) for Erdös weights appeared in [4]. We need an analogue of (1.2) which will be useful in establishing convergence of orthogonal expansions associated with Erdös weights.

To state our results we need some notation:
Definition 1.1. Let $W:=e^{-Q}$, where Q is even and continuous in \mathbb{R}, $Q^{\prime \prime \prime}$ exists in $(0, \infty)$, and Q^{\prime} is positive in $(0, \infty)$. Let

$$
\begin{equation*}
T(x):=1+\frac{x Q^{\prime \prime}(x)}{Q^{\prime}(x)}, \quad x \in(0, \infty) \tag{1.3}
\end{equation*}
$$

be increasing in $(0, \infty)$, with

$$
\begin{align*}
& \lim _{x \rightarrow 0^{+}} T(x)=T\left(0^{+}\right)>1, \tag{1.4}\\
& \lim _{x \rightarrow \infty} T(x)=\infty, \tag{1.5}
\end{align*}
$$

and for each $\varepsilon>0$,

$$
\begin{equation*}
T(x)=O\left(Q^{\prime}(x)^{\varepsilon}\right), \quad x \rightarrow \infty \tag{1.6}
\end{equation*}
$$

Assume further that

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \sim\left\{\frac{Q^{\prime}(x)}{Q(x)}\right\}, \quad x \text { large enough } \tag{1.7}
\end{equation*}
$$

and for some $C>0$,

$$
\begin{equation*}
\frac{\left|Q^{\prime \prime \prime}(x)\right|}{Q^{\prime}(x)} \leqslant C\left\{\frac{Q^{\prime}(x)}{Q(x)}\right\}^{2}, \quad x \text { large enough } . \tag{1.8}
\end{equation*}
$$

Then we say that W is an Erdös weight of class 3, and we write $W \in S E^{*}(3)$,

Remarks. (a) The limit (1.5) implies that $Q(x)$ grows faster than any polynomial at infinity, while (1.6) is a weak regularity condition: one typically has $[4,5]$

$$
\begin{equation*}
T(x)=O\left(\left[\log Q^{\prime}(x)\right]^{1+\varepsilon}\right), \quad x \rightarrow \infty \tag{1.9}
\end{equation*}
$$

for each $\varepsilon>0$. The restriction (1.4) simplifies analysis.
(b) The class $S E^{*}(3)$ is contained in the class $S E(3)$ of [5], for in [5] we take only $\varepsilon=\frac{1}{15}$ in (1.6).
(c) As examples of $W \in S E^{*}(3)$ we mention
$W(x):=\exp \left(-\exp _{k}\left(|x|^{\alpha}\right)\right), \quad x \in \mathbb{R}, \alpha>1, k$ is a positive integer,
where $\exp _{k}$ denotes the k th iterated $\operatorname{exponential~} \exp (\exp \ldots)$ (k times). Another example is
$W(x):=\exp \left(-\exp \left\{\log \left(A+x^{2}\right)\right\}^{\alpha}\right), \quad x \in \mathbb{R}, \alpha>1, A$ large enough. (1.11)
Definition 1.2. Let $W:=e^{-Q(x)}$, where $Q(x)$ is even and continuous in $\mathbb{R}, Q^{\prime}(x)$ exists in $(0, \infty)$, and $x Q^{\prime}(x)$ is increasing in ($0, \infty$) with limits 0 and ∞ at 0 and ∞, respectively. For $u>0$, we define the Mhaskar-Rahmanov-Saff number $a_{u}=a_{u}(W)$ to be the positive root of the equation

$$
\begin{equation*}
u:=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right)\left(1-t^{2}\right)^{1 / 2} d t \tag{1.12}
\end{equation*}
$$

It follows easily from the conditions of Definition 1.2 that for all $u>0, a_{u}$ exists and is unique. The number $a_{n}, n=1,2,3, \ldots$, is very important in that the suprenum norm of a weighted polynomial lives in [$-a_{n}, a_{n}$] (see [7]).

Definition 1.3. Given p and q such that $0<p, q \leqslant \infty$, define the Nikolskii constant $N_{n}:=N_{n}(p, q), n=1,2,3, \ldots$, by

$$
N_{n}(p, q):= \begin{cases}a_{n}^{1 / p-1 / q}, & \text { if } p \leqslant q \tag{1.13}\\ {\left[\left(n / a_{n}\right) T\left(a_{n}\right)^{1 / 2}\right]^{1 / q \cdots 1 / p},} & \text { if } p>q\end{cases}
$$

We are now ready to state our main results.
Theorem 1.4. (Nikolskii Inequality). Let $W \in S E^{*}(3), a_{n}$ be as in Definition 1.2, and $0<p, q \leqslant \infty$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{equation*}
\|P W\|_{L_{\rho}(\mathbb{R})} \leqslant C N_{n}\|P W\|_{L_{\varphi}(\mathbb{R})} . \tag{1.14}
\end{equation*}
$$

In Section 3, we prove (1.14) sharp for $p \leqslant q$ and also sharp for $p=\infty$ and $q=2$; and finally for $2<q<p<\infty$.

Theorem 1.5. Let $W \in S E^{*}(3)$,

$$
\begin{equation*}
\varphi_{n}(x):=\left|1-x^{2}\right|+1 / T\left(a_{n}\right), \quad x \in \mathbb{R} \tag{1.15}
\end{equation*}
$$

Let $\beta, \Delta>0$ and $\alpha \geqslant \frac{1}{2}$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{align*}
& \max _{x \in \mathbb{R}}\left|P^{\prime}(x) W(x) \varphi_{n}\left(\frac{x}{a_{\beta n}}\right)^{x}\right| \\
& \quad \leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}}\left|P(x) W(x) \varphi_{n}\left(\frac{x}{a_{A n}}\right)^{x-1 / 2}\right| \tag{1.16}
\end{align*}
$$

Theorem 1.6. (Bernstein Inequality). Let $W \in S E^{*}(3)$. Let $\alpha \geqslant \frac{1}{2}$ and $\beta>1$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{align*}
\max _{x \in \mathbb{R}} & \left.\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{\beta n}}\right)^{2}\right|^{x} \right\rvert\, \\
& \left.\leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{\beta n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\, . \tag{1.17}
\end{align*}
$$

Remarks. (a) The Markov inequality in [5, Theorem 2.6, p. 15] reads

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{L_{x}(\mathbb{R})} \leqslant C \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\|P W\|_{L_{x}(\mathbb{R})}, \quad P \in \mathscr{P}_{n} \tag{1.18}
\end{equation*}
$$

In particular, it is valid for $W \in S E^{*}(3)$. Furthermore, the dependence on n-namely $\left(n / a_{n}\right) T\left(a_{n}\right)^{1 / 2}$-is sharp (See [5, Theorem 2.6]) and is $O\left(n^{2}\right)$ (cf. (1.1) above).
(b) The function φ_{n} defined by (1.15) plays much the same role for Erdős weights as does the factor $(\sqrt{1-x}+1 / n)(\sqrt{1+x}+1 / n)$ in analogous questions for weights on $[-1,1]$. See [9, Theorem 9.19, p. 164].
(c) Theorem 4.1 below shows that for $x=\frac{1}{2}$, (1.17) is valid even for $\beta=1$.
(d) Without the factor $\left(1-\left(x / a_{\beta n}\right)^{2}\right)^{x}$ in (1.17) above, a factor $T\left(a_{n}\right)^{1 / 2}$ would appear on the right-hand side of (1.17).
(e) If, for example, $\alpha>0, k$ is a positive integer and (see (1.10))

$$
W(x)=e^{-Q(x)},
$$

where

$$
\begin{equation*}
Q(x)=\exp _{k}\left(|x|^{x}\right), \quad x \in \mathbb{R}, \tag{1.19}
\end{equation*}
$$

then all conditions of Definition 1.1 are satisfied and

$$
\begin{equation*}
T(x)=\alpha\left\{\prod_{i=1}^{k} \log _{j} Q(x)\right\}(1+o(1)), \quad x \rightarrow \infty \tag{1.20}
\end{equation*}
$$

A lengthy computation involving Laplace's method shows that

$$
\begin{equation*}
a_{n}=\left(\log _{k} n\right)^{1 / x}(1+o(1)), \tag{1.21}
\end{equation*}
$$

and

$$
\begin{align*}
Q^{\prime}\left(a_{n}\right) & \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2} \\
& \sim n\left[\prod_{j=1}^{k} \log _{j} n\right]^{1 / 2}\left(\log _{k} n\right)^{-1 / x}, \quad n \rightarrow \infty \tag{1.22}
\end{align*}
$$

Thus, for the weight above, (1.14), (1.16), and (1.17) become, respectively:

$$
\begin{align*}
& \|P W\|_{L_{p}(\mathbb{R})} \\
& \leqslant C\left\{\begin{array}{ll}
{\left[\left(\log _{k} n\right)^{1 / x}\right]^{1 / p-1 / 4},} & p \leqslant q \\
{\left[n\left(\prod_{j=1}^{k} \log _{j} n\right)^{1 / 2}\left(\log _{k} n\right)^{-1 / x}\right]^{1 / q-1 / p},} & p>q
\end{array}\right\}\|P W\|_{L_{q}(\mathbb{R})} ; \\
& \max _{x \in \mathbb{R}}\left|\left(P^{\prime} W\right)(x) \varphi_{n}\left(\frac{x}{a_{\beta n}}\right)^{\alpha}\right| \\
& \leqslant C n\left(\log _{k}\right)^{-1 / \alpha} \max _{x \in \mathbb{R}}\left|(P W)(x) \phi_{n}\left(\frac{x}{a_{\Delta n}}\right)^{x-1 / 2}\right|,
\end{align*}
$$

where

$$
\begin{gather*}
\varphi_{n}(x):=\left|1-x^{2}\right|+1 / \prod_{j=1}^{k} \log _{j} n \\
\left.\max _{x \in \mathbb{R}}\left|\left(P^{\prime} W\right)(x)\right| 1-\left.\left(\frac{x}{a_{\beta n}}\right)^{2}\right|^{\alpha} \right\rvert\, \\
\left.\leqslant C n\left(\log _{k} n\right)^{-1 / \alpha} \max _{x \in \mathbb{R}}|(P W)(x)| 1-\left.\left(\frac{x}{a_{\beta n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\, . \tag{1.17'}
\end{gather*}
$$

2. Preliminary Results

Let $W: \mathbb{R} \rightarrow \mathbb{R}$ be even, positive, and continuous, and such that all power moments

$$
\int_{-\infty}^{\infty} x^{j} W(x) d x, \quad j=0,1,2, \ldots
$$

exist. Associated with W^{2} are the orthonormal polynomials p_{j} of degree j, $j=0,1,2, \ldots$, satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty} p_{j}(x) p_{k}(x) W^{2}(x) d x=\delta_{j k}, \quad j, k=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

The nth Christoffel function is

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right):=\inf _{P \in \neq 中_{n-1}} \int_{-\infty}^{\infty}(P W)^{2}(t) d t / P^{2}(x)=\left\{\sum_{j=0}^{n-1} p_{j}^{2}(x)\right\}^{-1} \tag{2.2}
\end{equation*}
$$

$x \in \mathbb{R}, n=1,2,3, \ldots$. Given a fixed $s \geqslant 0$, we shall often use the notation

$$
\begin{equation*}
c_{n}:=a_{n}\left(1+s A_{n}\right) \tag{2.3}
\end{equation*}
$$

where $\Delta_{n}=\left((\log n) / n T\left(a_{n}\right)\right)^{2 / 3}$.
Lemma 2.1. Let $W \in S E^{*}(3), 0<p<\infty$, and c_{n} be defined by (2.3), with $s \geqslant 0$ fixed but large enough. Then for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{equation*}
\|P W\|_{L_{p}(\mathbb{R})} \leqslant 2\|P W\|_{L_{p}\left[-c_{n}, c_{n}\right]} \tag{2.4}
\end{equation*}
$$

Moreover, if $p=\infty$, we have

$$
\begin{equation*}
\|P W\|_{L_{x}(\mathbb{Q})}=\|P W\|_{L_{\star}\left[-a_{n}, u_{n}\right]} \tag{2.5}
\end{equation*}
$$

Proof. Equation (2.4) follows from (5.8) of Theorem 5.2 in [5], and (2.5) is (5.1) of Theorem 5.1 in [5].

Lemma 2.2. Let $W \in S E^{*}(3)$, and let $a_{n}, n \geqslant 1$, denote the nth Mhaskar-Rahmanov-Saff number for Q, defined by (1.12). Then for n large enough,

$$
\begin{equation*}
\max _{x \in \mathbb{R}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in \mathrm{R}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)\left|1-\left(\frac{x}{a_{n}}\right)^{1 / 2}\right| \sim \frac{n}{a_{n}} . \tag{2.7}
\end{equation*}
$$

Proof. These are respectively (1.17) and (1.18) of Theorem 1.2 in [6].

Lemma 2.3 Let $W \in S E^{*}(3)$. For any fixed $0<\alpha<\beta<\infty$, as $n \rightarrow \infty$,

$$
\begin{equation*}
T\left(a_{x n}\right) \sim T\left(a_{\beta n}\right) . \tag{2.8}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& 1-\frac{a_{x n}}{a_{\beta n}} \sim T\left(a_{n}\right)^{1} \tag{2.9}\\
& \lim _{u \rightarrow \infty} \frac{a_{x n}}{a_{u}}=1 \tag{2.10}
\end{align*}
$$

and for each $\varepsilon>0$,

$$
\begin{equation*}
T\left(a_{n}\right)=O\left(n^{\varepsilon}\right), \quad n \rightarrow \infty \tag{2.11}
\end{equation*}
$$

Proof. Equations (2.8) and (2.9) are respectively (2.7) and (2.8) of Lemma 2.2 in [6]. Equation (2.10) is (3.18) of Lemma 3.2 in [5]. Equation (2.11) follows from (1.6) and (2.25) of Lemma 2.3 in [4], noting that the function $\chi(x)$ there is $T(x)$ in this paper, and that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

We observe that if $W \in S E^{*}(3)$, then

$$
W^{k}:=e^{-k Q} \in S E^{*}(3), \quad k=1,2,3, \ldots
$$

This is easy to show because $T(x)$, defined by (1.3), is the same for both W and W^{k}.

Lemma 2.4. Let $W \in S E^{*}(3)$, and let $a_{n}, n \geqslant 1$, be defined by (1.12). Then for n large enough,

$$
\begin{equation*}
\max _{x \in \mathbb{R}} \lambda_{n}^{-1}\left(W^{2 k}, x\right) W^{2 k}(x) \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}, \quad k=1,2,3, \ldots \tag{2.12}
\end{equation*}
$$

Proof. We note that the nth Mhaskar-Rahmanov-Saff number for $k Q$, $k=1,2,3, \ldots$, which we denote by a_{n}^{*}, is the positive root of

$$
n=\frac{2}{\pi} \int_{0}^{1} a_{n}^{*} t(k Q)^{\prime}\left(a_{n}^{*} t\right)\left(1-t^{2}\right)^{-1 / 2} d t
$$

Then, the above implies that $a_{n}^{*}=a_{n / k}$. We obtain (2.12) from (2.6), (2.8), and the observation before this lemma.

Lemma 2.5. Let $W \in S E^{*}(3)$. For $n \geqslant 1$, let

$$
\begin{equation*}
\psi_{n}(x):=\int_{1 /\left(2 a_{n}\right)}^{1}(1-s)^{-1 / 2} \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)-a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} x-a_{n} s} d s, \quad x \in[0,1] \tag{2,13}
\end{equation*}
$$

Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough, $\left|(P W)^{\prime}(x)\right|$

$$
\begin{align*}
\leqslant & C\|P W\|_{L_{x}(\mathbb{R})} \\
& \times \begin{cases}\left(1-|x| / a_{n}\right)^{-1} \int_{|x| / a_{n}}^{1} \psi_{n}(t)(1-t)^{1 / 2} d t, & |x| \leqslant a_{n}\left[1-\left(n T\left(a_{n}\right)\right)^{-2 / 3}\right] \\
\left(n T\left(a_{n}\right)\right)^{2 / 3} / a_{n}, & |x| \geqslant a_{n}\left[1-\left(n T\left(a_{n}\right)\right)^{-2 / 3}\right]\end{cases} \tag{2.14}
\end{align*}
$$

Proof. This follows from (1.25) of Theorem 1.5 in [4], with $\varepsilon=\frac{1}{2}, r=1$, and the fact that A_{n}^{*} in [4] is such that $A_{n}^{*} \sim T\left(a_{n}\right)[5$, (3.44) of Lemma 3.4].

Lemma 2.6. Let $W \in S E^{*}(3)$. Let

$$
\begin{equation*}
\mu_{n, u_{n}}(x):=\frac{2}{\pi^{2}} \int_{0}^{1}\left(\frac{1-x^{2}}{1-s^{2}}\right)^{1 / 2} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{n\left(s^{2}-x^{2}\right)} d s \tag{2.15}
\end{equation*}
$$

$x \in(-1,1), n \geqslant 1$. Then for n large enough and $\frac{1}{2} \leqslant t \leqslant 1$,

$$
\begin{equation*}
\mu_{n, a_{n}}(t) \sim(1-t)^{1 / 2} \frac{a_{n}}{n} \psi_{n}(t) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{n, a_{n}}(t)(1-t)^{1 / 2} \leqslant C \tag{2.17}
\end{equation*}
$$

Proof. Equation (2.16) follows from (3.26) of Lemma 3.2 in [4], with $\varepsilon=\frac{1}{2}$. Equation (2.17) follows from (2.14) of Theorem 2.4 in [6].

3. Proof of the Nikolskii Inequality

Lemma 3.1. Under the conditions of Theorem 1.4 , with $p=\infty$ and q arbitrary, (1.14) holds.

Proof. We prove this lemma in three steps. We can express an arbitrary $P \in \mathscr{P}_{n}$ in the form

$$
P(x)=\sum_{j=0}^{n} d_{j} p_{j}\left(W^{2}, x\right)
$$

By the Cauchy-Schwarz inequality and Parseval's identity,

$$
\begin{aligned}
|(P W)(x)| & \leqslant\left(\sum_{j=0}^{n} d_{j}^{2}\right)^{1 / 2}\left(\sum_{j=0}^{n} p_{j}^{2}\left(W^{2}, x\right) W^{2}(x)\right)^{1 / 2} \\
& =\left(\int|(P W)(x)|^{2} d x\right)^{1 / 2}\left(\lambda_{n+1}^{-1}\left(W^{2}, x\right) W^{2}(x)\right)^{1 / 2}
\end{aligned}
$$

If we take the maximum over \mathbb{R} on the above, and use (2.6) and (2.8), (1.14) holds for $p=\infty$ and $q=2$.

Next, we show that (1.14) holds for $p=\infty$ and $q=2 k, k=1,2,3, \ldots$ We note that $P^{k} \in \mathscr{P}_{n k}, k \geqslant 1$, whenever $P \in \mathscr{P}_{n}$. By (2.8), (2.12), and the inequality above,

$$
\begin{aligned}
\left\|P^{k} W^{k}\right\|_{\left.L_{x}(H)\right)} & \leqslant\left\|P^{k} W^{k}\right\|_{L_{2}(\mathbb{R})}\left(\max _{x \in \mathbb{B}} \lambda_{n k+1}^{-1}\left(W^{2 k}, x\right) W^{2 k}(x)\right)^{1 / 2} \\
& \leqslant C_{1}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2}\left\|P^{k} W^{k}\right\|_{L_{2}(\mathbb{R})} .
\end{aligned}
$$

Then the result follows from the above by taking k th roots on both sides. Finally, we show that (1.14) holds for $p=\infty$ and q arbitrary.

Let $2 k$ be the smallest positive integer greater than or equal to q, q fixed but arbitrary. Then since (1.14) holds for $p=\infty$ and $q=2 k, k \geqslant 1$, we have

$$
\begin{aligned}
\|P W\|_{L_{x}(\mathbb{B})} & \leqslant C_{2}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2 k}\left(\int|(P W)(x)|^{4}|(P W)(x)|^{2 k-q} d x\right)^{1 / 2 k} \\
& \leqslant C_{3}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2 k}\|P W\|_{L_{x(\mathbb{B})}}^{(2 k-q / 2 k}\left(\int|(P W)(x)|^{q}\right)^{1 / 2 k}
\end{aligned}
$$

So,

$$
\|P W\|_{L_{x}(\mathbb{B})}^{q / 2 k} \leqslant C_{3}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2 k}\|P W\|_{L_{q}(\mathbb{R})}^{q / 2 k} .
$$

This completes our proof.
Proof of (1.14) of Theorem 1.4 for $p \leqslant q$. By Hölder's inequality and (2.4) above,

$$
\begin{aligned}
\|P W\|_{L_{p}(\mathbb{P})} & \leqslant 2\left[\int_{-c_{n}}^{c_{n}}|(P W)(x)|^{p q / p} d x\right]^{1 / q}\left[\int_{-c_{n}}^{c_{n}} d x\right]^{(q-p) / p q} \\
& \leqslant C_{4}\|P W\|_{L_{q}(\mathbb{P})} c_{n}^{1 / p-1 / q} .
\end{aligned}
$$

Then (1.14) follows for $p \leqslant q$ from the above since $c_{n} \leqslant C_{5} a_{n}$ as $\Delta_{n}=o(1)$ in (2.3).

Proof of (1.14) of Theorem 1.4 for $p>q$. By Lemma 3.1 above,

$$
\begin{aligned}
\|P W\|_{L_{p}(\mathbb{R})} & =\left(\int|(P W)(x)|^{q}|(P W)(x)|^{p-q} d x\right)^{1 / p} \\
& \leqslant\|P W\|_{L_{x}(\mathbb{R})}^{(p-q) / p}\|P W\|_{L_{q}(\mathbb{R})}^{q / p} \\
& \leqslant C_{6}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{(p-q) / p q}\|P W\|_{L_{q}(\mathbb{R})}^{(p-q) / p}\|P W\|_{L_{L_{q}(\mathbb{R})}}^{q / p} .
\end{aligned}
$$

Then (1.14) for $p>q$ follows from the inequality above.
Using the methods of [10], we now investigate the sharpness of Theorem 1.6.

Proof of the Sharpness of (1.14) of Theorem 1.4 for $p \leqslant q$. We show that under the conditions of Theorem 1.4 there exist a constant $C>0$ and a sequence of polynomials $\left\{S_{n}^{*}\right\}_{n=1}^{\infty}$ with degree $S_{n}^{*} \leqslant n$, such that

$$
\begin{equation*}
\left\|S_{n}^{*} W\right\|_{L_{p}(\mathbb{R})} \geqslant C N_{n}\left\|S_{n}^{* W}\right\|_{L_{q}(\mathbb{R})} \tag{3.1}
\end{equation*}
$$

Under our conditions on Q, Theorem 5.4 in [1] implies the existence of an even entire function G defined by

$$
\begin{equation*}
G(x):=\sum_{j=0}^{\infty} h_{2 i} x^{2 j}, \quad h_{2 i} \geqslant 0 \tag{3.2}
\end{equation*}
$$

such that

$$
G(x) \sim W(x)^{-1}, \quad x \in \mathbb{R}
$$

We define S_{n}^{*} to be the $\langle n / 2\rangle$ nd partial sum of the power series in (3.2) above. Then

$$
\begin{equation*}
0 \leqslant S_{n}^{*}(x) \leqslant C_{7} W(x)^{-1}, \quad x \in \mathbb{R} . \tag{3.3}
\end{equation*}
$$

By the Hermite contour integral error formula,

$$
G(x)-S_{n}^{*}(x)=\frac{1}{2 \pi i} \int_{|1|=r} \frac{G(t)}{t-x}\left(\frac{x}{t}\right)^{n+1} d t, \quad|x|<r
$$

and so

$$
\begin{aligned}
\left|G(x)-S_{n}^{*}(x)\right| & \leqslant \frac{1}{2 \pi} 2 \pi r \max _{|t|=r}\left|\frac{G(t)}{t-x}\right|\left|\frac{x}{r}\right|^{n+1} \\
& \leqslant r \frac{G(r)}{r-|x|}\left(\frac{|x|}{r}\right)^{n+1} \quad \text { (as } G \text { has non-negative coefficients) } \\
& \leqslant C e^{Q(r)}\left(\frac{|x|}{r}\right)^{n+1}, \quad \text { provided }|x| \leqslant \frac{r}{2} .
\end{aligned}
$$

Now, let us suppose that for some $0<\varepsilon<\frac{1}{2},|x| \leqslant \varepsilon$. Then

$$
\begin{aligned}
\left|G(x)-S_{n}^{*}(x)\right| & \leqslant C_{1} \exp (Q(r)) \varepsilon^{n} \\
& =C_{1} \exp \left(n\left[-\log \frac{1}{\varepsilon}+\frac{Q(r)}{n}\right]\right)
\end{aligned}
$$

and choosing $r=a_{n}$, we get

$$
\left|G(x)-S_{n}^{*}(x)\right| \leqslant C_{1} \exp \left(n\left[-\log \frac{1}{\varepsilon}+\frac{Q\left(a_{n}\right)}{n}\right]\right)=o(1)
$$

since $Q\left(a_{n}\right)=o(n), n \rightarrow \infty$ (see [4, Lemma 2.2(a)]). This shows that there exists $0<\varepsilon<\frac{1}{2}$ such that

$$
G(x) \leqslant S_{n}^{*}(x)+o(1)
$$

uniformly for $|x| \leqslant \varepsilon a_{n}$ and n large enough. Thus we have

$$
\begin{equation*}
W(x)^{-1} \leqslant C_{8} S_{n}^{*}(x), \quad|x| \leqslant \varepsilon a_{n} . \tag{3.4}
\end{equation*}
$$

Given $r>0$, by (3.3) and (3.4) we have

$$
\begin{equation*}
\left\|S_{n}^{*} W\right\|_{L_{n}(\mathbb{R})} \geqslant\left\|S_{n}^{*} W\right\|_{L_{r}\left[-c a_{n}, c a_{n}\right]} \sim a_{n}^{1 / r}, \tag{3.5}
\end{equation*}
$$

and by (2.4)

$$
\begin{equation*}
\left\|S_{n}^{*} W\right\|_{L_{r(\mathbb{R})}} \leqslant 2\left\|S_{n}^{*} W\right\|_{L_{r}\left(-c_{n}, c_{n}\right]} \leqslant C_{9} a_{n}^{1 / r} \tag{3.6}
\end{equation*}
$$

So, for any $0<r<\infty$,

$$
\left\|S_{n}^{*} W\right\|_{L_{r}(\mathcal{R})} \sim a_{n}^{1 / r}, \quad n \geqslant 1
$$

and hence (3.1).
Proof of the Sharpness of (1.14) of Theorem 1.4 for $p=\infty$ and $q=2$. By (2.2),

$$
\sup _{x \in \mathbb{B}} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \leqslant \sup _{P \in \psi_{n-1}} \frac{\|P W\|_{L_{x}(\mathbb{R})}^{2}}{\|P W\|_{L_{2}(\mathbb{R})}^{2}}
$$

Using (2.11) and taking square roots we have

$$
C_{10}\left[\frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2} \leqslant \sup _{P \in: P_{n}} \frac{\|P W\|_{L_{x}(\mathbb{R})}}{\|P W\|_{L_{2}(\mathbb{R})}},
$$

which completes this proof.

We now use the sharpness of (1.14) of Theorem 1.4 ($p=\infty$ and $q=2$) to prove sharpness for $2<q<p<\infty$.

Proof of the Sharpness of (1.14) of Theorem 1.4 for $2<q<p<\infty$. By the sharpness for $p=\infty$ and $q=2$, we have

$$
\begin{equation*}
\left\|P^{*} W\right\|_{L_{x}(A)}=N_{n}(\infty, 2)\left\|P^{*} W\right\|_{L_{2}(A)}, \tag{3.7}
\end{equation*}
$$

for some $P^{*} \in \mathscr{P}_{n}$. Here, $N_{n}(\infty, 2):=C\left[\left(n / a_{n}\right) T\left(a_{n}\right)^{1 / 2}\right]^{1 / 2}$ (cf. (1.13)). Let $2<q<p<\infty$. By Theorem 1.4,

$$
\begin{equation*}
\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})} \leqslant N_{n}(\infty, 2)^{2 / 4}\left\|P^{*} W\right\|_{L_{q}(\mathbb{Q})} \tag{3.8}
\end{equation*}
$$

Next, we observe that

$$
\begin{align*}
\left\|P^{*} W\right\|_{L_{q}(\mathbb{R})} & \leqslant\left\|P^{*} W\right\|_{L_{x}(\mathbb{R}) / q}^{1-2 / q}\left\|P^{*} W\right\|_{L_{2}(\mathbb{R})}^{2 / \varphi} \\
& =\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})}^{1-2 /} N_{n}(\infty, 2)^{-2 / \varphi}\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})}^{2 / 4} \tag{3.7}\\
& =N_{n}(\infty, 2)^{-2 / 4}\left\|P^{*} W\right\|_{L_{x}((\mathbb{)})} .
\end{align*}
$$

Combining (3.8) and (3.9) we obtain

$$
\begin{equation*}
\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})}=N_{n}(\infty, 2)^{2 / \varphi}\left\|P^{*} W\right\|_{L_{q}(\mathbb{B})} . \tag{3.10}
\end{equation*}
$$

Again, by Theorem 1.4,

$$
\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})} \leqslant N_{n}(\infty, 2)^{2 / p}\left\|P^{*} W\right\|_{L_{p}(\mathbb{R})},
$$

and so

$$
\begin{align*}
\left\|P^{*} W\right\|_{L_{q}(\mathbb{R})} & \leqslant N_{n}(\infty, 2)^{-2 / \varphi}\left\|P^{*} W\right\|_{L_{x}(\mathbb{R})} \\
& =N_{n}(\infty, 2)^{-(2 / q-2 / p)}\left\|P^{*} W\right\|_{L_{p}(\mathbb{R})} \tag{3.11}
\end{align*}
$$

by (3.10). This completes our proof.

4. Proof of the Bernstein Inequality

Theorem 4.1. Let $W \in S E^{*}(3)$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{equation*}
\left.\max _{x \in \mathbb{R}}\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{n}}\right)^{2}\right|^{1 / 2} \right\rvert\, \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{x}(\mathbb{R})} . \tag{4.1}
\end{equation*}
$$

Proof. $\left|(P W)^{\prime}(x)\right|=\left|\left(P^{\prime} W\right)(x)+Q^{\prime}(x)(P W)(x)\right|$. So,

$$
\left|\left(P^{\prime} W\right)(x)\right| \leqslant\left|(P W)^{\prime}(x)\right|+\left|Q^{\prime}(x)(P W)(x)\right| .
$$

It is easy to show that

$$
1-\left(\frac{x}{a_{n}}\right)^{2} \sim 1-\frac{|x|}{a_{n}}, \quad|x| \leqslant a_{n} .
$$

By (2.14), (2.16), and the two inequalities above, and for $a_{n} / 2 \leqslant|x| \leqslant$ $a_{n}\left[1-\left(n T\left(a_{n}\right)\right)^{-2 / 3}\right]$,

$$
\begin{align*}
& \left|\left(P^{\prime} W\right)(x)\right|\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{1 / 2} \\
& \leqslant \\
& \quad C_{11}\|P W\|_{L_{x}(\mathbb{R})}\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{-1 / 2} \int_{|x| / a_{n}}^{1} \frac{n}{a_{n}} \mu_{n \cdot u_{n}}(t) d t \tag{4.2}\\
& \quad+\left|Q^{\prime}(x)\right|\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{1 / 2}\|P W\|_{L_{x}(\mathbb{R})} .
\end{align*}
$$

We estimate the first term on the right-hand side of (4.2). By (2.17)

$$
\begin{equation*}
\int_{|x| / a_{n}}^{1} \mu_{n, a_{n}}(t) d t \leqslant C_{12} \int_{|x| / a_{n}}^{1} \frac{d t}{\sqrt{1-t^{2}}} \leqslant C_{13}\left(1-\frac{|x|}{a_{n}}\right)^{1 / 2} \tag{4.3}
\end{equation*}
$$

To estimate the second term of (4.2), we recall that a_{n}, where n is a positive integer, is the positive root of

$$
n=\frac{2}{\pi} \int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-1 / 2} d t
$$

So,

$$
\begin{align*}
n & \geqslant \frac{2}{\pi} \int_{|x| \mid a_{n}}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-1 / 2} d t \\
& \geqslant \frac{2}{\pi} \int_{|x| \mid a_{n}}^{1} x Q^{\prime}(x)\left(1-t^{2}\right)^{-1 / 2} d t \\
& \geqslant C_{14} a_{n}\left|Q^{\prime}(x)\right|\left(1-\frac{|x|}{a_{n}}\right)^{1 / 2} . \tag{4.4}
\end{align*}
$$

By (4.2)-(4.4), and for $a_{n} / 2 \leqslant|x| \leqslant a_{n}\left[1-\left(n T\left(a_{n}\right)\right)^{-2 / 3}\right]$,

$$
\begin{equation*}
\left|\left(P^{\prime} W\right)(x)\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{1 / 2}\right| \leqslant C_{15} \frac{n}{a_{n}}\|P W\|_{L_{x}(\mathbb{E})} . \tag{4.5}
\end{equation*}
$$

For $a_{n}\left[1-\left(n T\left(a_{n}\right)\right)^{-2 / 3}\right] \leqslant|x| \leqslant a_{n}$, the only difference is that by (2.13) and (2.11),

$$
\begin{aligned}
\left|(P W)^{\prime}(x)\right|\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{1 / 2} & \leqslant C_{16}\left(n T\left(a_{n}\right)\right)^{2 / 3} / a_{n}\|P W\|_{L_{x}(\mathbb{P})} \\
& \leqslant C_{17} \frac{n}{a_{n}}\|P W\|_{L_{x}(\mathbb{R})} .
\end{aligned}
$$

We close the gap by showing that (4.5) holds even for $|x| \leqslant a_{n} / 2$. This follows from Corollary 3.2 in [3]. It is easy to show that ξ_{x} in [3], the root of $\xi_{x}^{2} Q^{\prime \prime}\left(\xi_{x}\right)=x, x$ large, satisfies $\xi_{n} / a_{n} \rightarrow 1, n \rightarrow \infty$. So we have shown

$$
\max _{\left[-a_{n}, a_{n}\right]}\left|\left(P^{\prime} W\right)(x)\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{1 / 2}\right| \leqslant C \frac{n}{a_{n}}\|P W\|_{L_{x}(\mathbb{R})}
$$

As $a_{2 n}$ for W^{2} is a_{n} for W, we have

$$
\max _{x \in \mathbb{R}}\left|P^{\prime}(x)^{2}\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right) W^{2}(x)\right|=\max _{\left[-a_{n}, a_{n}\right]}\left|P^{\prime}(x)^{2}\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right) W^{2}(x)\right|,
$$

and the result follows.
Lemma 4.2. Fix $\alpha=\gamma+j, 0 \leqslant \gamma<1$ and $j=0,1,2, \ldots$ Let

$$
\begin{equation*}
u(x):=\left(1-x^{2}\right)^{-y}, \quad x \in[-1,1] \tag{4.6}
\end{equation*}
$$

and let

$$
\begin{equation*}
R_{n}(x):=\frac{1}{n} \lambda_{n}^{-1}\left(u, \frac{x}{a_{4 n}}\right)\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{j} . \tag{4.7}
\end{equation*}
$$

Then there exists $C>0$ such that for n large enough, and uniformly for $|x| \leqslant a_{4 n}\left(1-n^{-2}\right)$,

$$
\begin{gather*}
R_{n}(x) \sim\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{x-1 / 2}, \tag{4.8}\\
\left|R_{n}^{\prime}(x)\right| \leqslant \frac{C}{a_{4 n}}\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-3 / 2} . \tag{4.9}
\end{gather*}
$$

Furthermore, uniformly for $|x| \leqslant a_{3 n}$,

$$
\begin{equation*}
\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\alpha-1} \leqslant C T\left(a_{n}\right)^{1 / 2}\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\alpha-1 / 2} \tag{4.10}
\end{equation*}
$$

Proof. We first show (4.8) and (4.9) for α such that $j=0$ and then extend that result to arbitrary $j=1,2,3, \ldots$. Let

$$
\begin{equation*}
u_{n}(x):=(\sqrt{1-x}+1 / n)^{1-2 \gamma}(\sqrt{1+x}+1 / n)^{1-2 \gamma} \tag{4.11}
\end{equation*}
$$

For $|x| \leqslant a_{4 n}\left(1-n^{-2}\right)$,

$$
u_{n}\left(\frac{x}{a_{4 n}}\right) \sim\left(\sqrt{1-\left(\frac{x}{a_{4 n}}\right)^{2}}\right)^{1-2 \gamma}
$$

So, by Lemma 6.3.5 in [9, p.108],

$$
\begin{equation*}
\lambda_{n}^{-1}\left(u, \frac{x}{a_{4 n}}\right) \sim \frac{n}{u_{n}\left(x / a_{4 n}\right)} \sim n\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\gamma-1 / 2} \tag{4.12}
\end{equation*}
$$

and (4.8) follows when $j=0$. By (4.12) and (23) in [11, p. 36],

$$
\left|\left(\lambda_{n}^{-1}\left(u, \frac{x}{a_{4 n}}\right)\right)^{\prime}\right|=\frac{\left|\lambda_{n}^{\prime}\left(u, x / a_{4 n}\right)\right|}{a_{4 n} \lambda_{n}^{2}\left(u, x / a_{4 n}\right)} \leqslant C_{18} \frac{n}{a_{4 n}}\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\gamma-3 / 2}
$$

and (4.9) follows when $j=0$.
It is easy to show that (4.8) for $j=1,2,3, \ldots$ follows from (4.8) with $j=0$. By (4.7), we have

$$
\begin{aligned}
R_{n}^{\prime}(x)= & \frac{1}{n a_{4 n}}\left(\lambda_{n}^{-1}\left(u, \frac{x}{a_{4 n}}\right)\right)^{\prime}\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{j} \\
& -2 j \frac{x}{a_{4 n}^{2}}\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{-1} \frac{1}{n} \lambda_{n}^{-1}\left(u, \frac{x}{a_{4 n}}\right)\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{j}
\end{aligned}
$$

and (4.9) for $j=1,2,3, \ldots$ follows from (4.8) for $j=0$ and (4.9) for $j=0$. To show (4.10), we note that for $|x| \leqslant a_{3 n}$,

$$
1-\frac{|x|}{a_{n}} \geqslant 1-\frac{a_{3 n}}{a_{4 n}} \geqslant C_{19} / T\left(a_{n}\right) .
$$

So,

$$
\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{1 / 2} \geqslant C_{20} / T\left(a_{n}\right)^{1 / 2}
$$

and (4.10) follows.
We remark that Lemma 4.2 is also valid for $\alpha=\gamma+j$, where $j=-1$, $-2,-3, \ldots$.

Lemma 4.3. Let $W \in S E^{*}(3)$, and let \propto be as in Lemma 4.2. There exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{align*}
& |(P W)(x)|\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1} \\
& \quad \leqslant C_{21} T\left(a_{n}\right)^{1 / 2}|(P W)(x)|\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \tag{4.13}
\end{align*}
$$

uniformly for $|x| \leqslant a_{3 n}$.
Proof. This follows from (4.10).
Lemma 4.4. Let $W \in S E^{*}(3), \eta \geqslant a_{n}$, and define

$$
\begin{equation*}
W_{x}(x):=W(x)\left(1-\left(\frac{x}{\eta}\right)^{2}\right)^{x}, \quad|x|<\eta, \quad \alpha>0 \text { fixed } . \tag{4.14}
\end{equation*}
$$

Let \hat{a}_{n} be the Mhaskar-Rahmanov-Saff number for

$$
Q_{x}(x)=Q(x)-\alpha \log \left(1-\left(\frac{x}{\eta}\right)^{2}\right)
$$

Then

$$
\begin{equation*}
a_{n} \geqslant \hat{a}_{n}, \tag{4.15}
\end{equation*}
$$

and for any $P \in \mathscr{P}_{n}, n=1,2,3, \ldots$,

$$
\begin{align*}
\max _{[-\eta, \eta]} & \left|P(x) W(x)\left(1-\left(\frac{x}{\eta}\right)^{2}\right)^{x}\right| \\
& =\max _{\left[-a_{n}, a_{n}\right]}\left|P(x) W(x)\left(1-\left(\frac{x}{\eta}\right)^{2}\right)^{x}\right| . \tag{4.16}
\end{align*}
$$

Proof. For $0<x<\eta$,

$$
Q_{x}^{\prime}(x)=Q^{\prime}(x)+\frac{2\left(\alpha x / \eta^{2}\right)}{1-(x / \eta)^{2}} \geqslant Q^{\prime}(x)
$$

Then

$$
n \geqslant \frac{2}{\pi} \int_{0}^{1} \hat{a}_{n} t Q^{\prime}\left(\hat{a}_{n} t\right)\left(1-t^{2}\right)^{-1 / 2} d t
$$

and so,

$$
\int_{0}^{1} a_{n} t Q^{\prime}\left(a_{n} t\right)\left(1-t^{2}\right)^{-1 / 2} d t \geqslant \int_{0}^{1} \hat{a}_{n} t Q^{\prime}\left(\hat{a}_{n} t\right)\left(1-t^{2}\right)^{-1 / 2} d t .
$$

Using the inequality above and the fact that $R t Q^{\prime}(R t)$ increases as $R t$ increases, (4.15) follows. By (4.15) and Theorem 2.2(c) and Example 3.3 in [7], (4.16) follows.

Lemma 4.5. Let $W \in S E^{*}(3)$. Fix $\alpha \geqslant \frac{1}{2}$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{align*}
& \left.\max _{\left[-a_{3 n}, a_{3 n}\right]}\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x} \right\rvert\, \\
& \left.\quad \leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \right\rvert\, \tag{4.17}
\end{align*}
$$

Proof. Let R_{n} and α be as in Lemma 4.2. By (4.1), (4.8), and (4.11), and for $|x| \leqslant a_{3 n}$,

$$
\begin{aligned}
& \left.\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha} \right\rvert\, \\
&=\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2}| | 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{1 / 2} \\
& \sim \left.\left|\left(P^{\prime} R_{n}\right)(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{1 / 2} \right\rvert\, \\
& \leqslant \left.\left|\left(P R_{n}\right)^{\prime}(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{1 / 2} W(x) \right\rvert\, \\
& \left.+\left|R_{n}^{\prime}(x)\right||(P W)(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{1 / 2} \right\rvert\, \\
& \leqslant C_{22}\left\{\frac{n}{a_{n}} \max _{x \in \mathbb{R}}\left|\left(P R_{n}\right)(x) W(x)\right|+\frac{1}{a_{4 n}}\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1}|P(x) W(x)|\right\} \\
& \leqslant C_{23}\left\{\frac{n}{a_{n}\left[-\max _{4 n}, a_{4 n}\right]}\left|P(x) R_{n}(x) W(x)\right|\right. \\
&\left.\left.+\frac{T\left(a_{n}\right)^{1 / 2}}{a_{4 n}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\,\right\} \\
& \leqslant C_{24}\left\{\left.\left.\frac{n}{a_{n}\left[-u_{n}, a_{n}\right]}\right|^{\max }|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\,\right\},
\end{aligned}
$$

by (4.16), (4.8), (2.9), and (2.10). Then (4.17) follows from the inequality above.

Lemma 4.6. Let $W \in S E^{*}(3)$. Fix $\alpha \geqslant \frac{1}{2}$. Then there exists $C>0$ such that for $|x| \geqslant a_{3 n}, P \in \mathscr{P}_{n}$, and n large enough,

$$
\begin{equation*}
\left.\left|P^{\prime}(x) W(x)\right| \leqslant C\left(\frac{a_{2 n}}{|x|}\right)^{n} \frac{n}{a_{n}} T\left(a_{n}\right)^{x} \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\, \tag{4.18}
\end{equation*}
$$

Proof. By (5.1) and (5.2) of Theorem 5.1 in [5], and for $|x| \geqslant a_{2 n}$,

$$
\begin{align*}
\left|P^{\prime}(x) x^{n} W(x)\right| & \leqslant \max _{\left[-a_{2 n}, a_{2 n}\right]}\left|P^{\prime}(x) x^{n} W(x)\right| \\
& \leqslant a_{2 n}^{n} \max _{\left[-a_{2 n}, a_{2 n}\right]}\left|P^{\prime}(x) W(x)\right| \\
& \leqslant C_{25} a_{2 n}^{n} \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}\|P W\|_{L_{x}(\mathbb{R})} \quad \text { by }(1.18) \tag{1.18}\\
& \left.=C_{25} a_{2 n}^{n} \frac{n}{a_{n} T\left(a_{n}\right.}\right)^{1 / 2}\|P W\|_{\left[-a_{n}, a_{n}\right]} .
\end{align*}
$$

Then (4.18) follows since for $|x| \leqslant a_{2 n}$,

$$
\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \geqslant\left|1-\left(\frac{a_{2 n}}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \geqslant C_{26} T\left(a_{n}\right)^{-(\alpha-1 / 2)},
$$

and so

$$
\begin{aligned}
T\left(a_{n}\right)^{1 / 2}\|P W\|_{\left[-a_{n}, a_{n}\right]} & \leqslant C_{26} T\left(a_{n}\right)^{\alpha}\left\|P W\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\alpha-1 / 2}\right\|_{\left[-a_{n}, a_{n}\right]} \\
& \leqslant C_{27} T\left(a_{n}\right)^{\alpha}\left\|P W\left(1-\left(\frac{x}{a_{4 n}}\right)^{2}\right)^{\alpha-1 / 2}\right\|_{L_{x}(R)}
\end{aligned}
$$

by (4.16).

Lemma 4.7. Let $W \in S E^{*}(3)$. Fix $\alpha \geqslant \frac{1}{2}$. Then there exists $C>0$ such that for $|x| \geqslant a_{3 n}, P \in \mathscr{P}_{n}$, and n large enough,

$$
\begin{align*}
& \left.\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha} \right\rvert\, \\
& \left.\quad \leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \right\rvert\, \tag{4.19}
\end{align*}
$$

Proof. By (4.18) and (2.10), and for $|x| \geqslant a_{3 n}$,

$$
\begin{align*}
& \left.\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x} \right\rvert\, \\
& \leqslant C_{28}\left|1+\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x}\left(\frac{a_{2 n}}{|x|}\right)^{n} \frac{n}{a_{n}} T\left(a_{n}\right)^{x} \\
& \times \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \\
& \leqslant C_{29}\left[\left(\frac{a_{2 n}}{a_{3 n}}\right)^{2}+\left(\frac{a_{2 n}}{a_{4 n}}\right)^{2}\right]^{x}\left(\frac{a_{2 n}}{a_{3 n}}\right)^{n-2 \alpha} \frac{n}{a_{n}} T\left(a_{n}\right)^{\alpha} \\
& \left.\times \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\, \\
& \leqslant C_{30} \frac{n}{a_{n}}\left(\frac{a_{2 n}}{a_{3 n}}\right)^{n} 2 x \\
& T\left(a_{n}\right)^{\alpha} \tag{4.20}\\
& \left.\times \max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2} \right\rvert\,
\end{align*}
$$

It suffices to show that

$$
\begin{equation*}
\left(\frac{a_{2 n}}{a_{3 n}}\right)^{n-2 x} T\left(a_{n}\right)^{\alpha} \rightarrow 0, \quad n \rightarrow \infty . \tag{4.21}
\end{equation*}
$$

By (2.9),

$$
\begin{aligned}
&\left(\frac{a_{2 n}}{a_{3 n}}\right)^{n-2 \alpha} T\left(a_{n}\right)^{\alpha} \\
&=\exp \left[(n-2 \alpha) \log \left(\frac{a_{2 n}}{a_{3 n}}\right)+\alpha \log T\left(a_{n}\right)\right] \\
& \leqslant \exp \left[(n-2 \alpha)\left(-C_{31} / T\left(a_{n}\right)\right)+\alpha \log T\left(a_{n}\right)\right] \\
&=\exp \left\{\frac{n}{T\left(a_{n}\right)}\left[-C_{31}\left(1-\frac{2 \alpha}{n}\right)+\alpha\left(\frac{\log T\left(a_{n}\right)}{n}\right) T\left(a_{n}\right)\right]\right\} .
\end{aligned}
$$

Taking limits as $n \rightarrow \infty$ and using (2.11), we get (4.21), and so (4.19) follows from (4.20) and (4.21).

Theorem 4.8. Let $W \in S E^{*}(3)$. Fix $\alpha \geqslant \frac{1}{2}$. Then there exists $C>0$ such that for $P \in \mathscr{P}_{n}$ and n large enough,

$$
\begin{align*}
\max _{x \in \mathbb{R}} & \left.\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x} \right\rvert\, \\
& \left.\leqslant C \frac{n}{a_{n}} \max _{x \in \mathbb{R}} \| P(x) W(x)\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \right\rvert\, . \tag{4.22}
\end{align*}
$$

Proof. Equation (4.22) follows from (4.17) and (4.19).
Lemma 4.9. Fix $\alpha, \Delta, \eta>0$. Then there exists $C>0$ such that for all $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|1-\left(\frac{x}{a_{\Delta n}}\right)^{2}\right|^{x} \leqslant C\left[\left|1-\left(\frac{x}{a_{\eta n}}\right)^{2}\right|^{x}+T\left(a_{n}\right)^{-x}\right] . \tag{4.23}
\end{equation*}
$$

Proof. By (2.9),

$$
\begin{aligned}
\left|1-\left(\frac{x}{a_{\Delta n}}\right)^{2}\right|^{\alpha} & =\left|\left(1-\left(\frac{x}{a_{\eta n}}\right)^{2}\right)+\left(\left(\frac{x}{a_{n n}}\right)^{2}-\left(\frac{x}{a_{\Delta n}}\right)^{2}\right)\right|^{x} \\
& \leqslant C_{32}\left|1-\left(\frac{x}{a_{\eta n}}\right)^{2}\right|^{x}+\left|\frac{x}{a_{\eta n}}\right|^{2 x} T\left(a_{n}\right)^{-x} .
\end{aligned}
$$

If $|x| \leqslant 2 \max \left\{a_{2 \eta n}, a_{2 A n}\right\}$, then

$$
\left|\frac{x}{a_{\eta n}}\right| \leqslant 2 \max \left\{\frac{a_{2 \eta n}}{a_{\eta n}}, \frac{a_{2 A n}}{a_{\eta n}}\right\} \leqslant C_{32} .
$$

So, (4.23) follows in this case from the two inequalities above. If $|x| \geqslant 2 \max \left\{a_{2 \eta n}, a_{2 A n}\right\}$, then $|x| \geqslant a_{A n}$, and so

$$
\left|1-\left(\frac{x}{a_{\Delta n}}\right)^{2}\right|^{\alpha} \leqslant\left|\frac{x}{a_{\Delta n}}\right|^{2 \alpha}
$$

while

$$
\begin{aligned}
\left|1-\left(\frac{x}{a_{\eta n}}\right)^{2}\right|^{x} & =\left|\frac{x}{a_{\eta n}}\right|^{2 x}\left|1-\left(\frac{a_{\eta n}}{x}\right)^{2}\right|^{x} \\
& \geqslant\left|\frac{x}{a_{\eta n}}\right|^{2 x}\left(1-\frac{1}{4}\right)^{x}=C_{33}\left|\frac{x}{a_{\eta n}}\right|^{2 \alpha} .
\end{aligned}
$$

These two inequalities together imply

$$
\left|1-\left(\frac{x}{a_{A n}}\right)^{2}\right|^{x} \leqslant C_{34}\left|1-\left(\frac{x}{a_{n n}}\right)^{2}\right|^{x},
$$

and so (4.23) holds for such x.

Lemma 4.10. Let $\varphi_{n}(x):=\left|1-x^{2}\right|+1 / T\left(a_{n}\right), x \in \mathbb{R}$. Fix $\beta \geqslant 0, \delta>0$. Then

$$
\begin{equation*}
\varphi_{n}\left(\frac{x}{a_{\delta n}}\right)^{\beta} \sim 1 / T\left(a_{n}\right)^{\beta}+\left|1-\left(\frac{x}{a_{\delta n}}\right)^{2}\right|^{\beta} \quad \text { for all } \quad x \in \mathbb{R} . \tag{4.24}
\end{equation*}
$$

Proof. Obvious.
Proof of (1.16) of Theorem 1.5. Fix $\beta, \Delta>0$. By (4.22), (4.23), and (1.18),

$$
\begin{aligned}
&\left|P^{\prime}(x) W(x) \varphi_{n}\left(\frac{x}{a_{\beta n}}\right)^{\alpha}\right| \\
& \leqslant C_{35}\left\{\left|P^{\prime}(x) W(x)\right|\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x}+T\left(a_{n}\right)^{-\alpha}\left|P^{\prime}(x) W(x)\right|\right\} \\
& \leqslant C_{36}\left\{\frac{n}{a_{n}} \max _{x \in \mathbb{B}}|P(x) W(x)|\left|1-\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{x-1 / 2}\right. \\
&\left.+T\left(a_{n}\right)^{-(x-1 / 2)} \frac{n}{a_{n}}\|P W\|_{L_{x}(\mathbb{B})}\right\} \\
& \leqslant C_{37} \frac{n}{a_{n}} \max _{x \in \mathbb{R}}|P(x) W(x)|\left[\left|1-\left(\frac{x}{a_{A n}}\right)^{2}\right|^{x-1 / 2}+1 / T\left(a_{n}\right)^{\alpha-1 / 2}\right]
\end{aligned}
$$

and so (1.16) follows from (4.25) above.
Proof of (1.17) of Theorem 1.6. Fix $\beta>1$. By (4.23), (4.22), and (1.19), $\left.\max _{x \in \mathbb{R}}\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{\beta n}}\right)^{2}\right|^{x} \right\rvert\,$

$$
\begin{aligned}
\leqslant & C_{38}\left\{\left.\max _{x \in \mathbb{R}}\left|P^{\prime}(x) W(x)\right| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha}\left|+T\left(a_{n}\right)^{\alpha} \max _{x \in \mathbb{R}}\right| P^{\prime}(x) W(x) \right\rvert\,\right\} \\
\leqslant & C_{39} \frac{n}{a_{n}}\left\{\left.\max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{4 n}}\right)^{2}\right|^{\alpha-1 / 2} \right\rvert\,\right. \\
& \left.+T\left(a_{n}\right)^{-(x-1 / 2)}\|P W\|_{L_{x}(\mathbb{R})}\right\} \\
\leqslant & C_{40} \frac{n}{a_{n}}\left\{\left.\max _{x \in \mathbb{R}}|P(x) W(x)| 1-\left.\left(\frac{x}{a_{\beta n}}\right)\right|^{\alpha-1 / 2} \right\rvert\,\right. \\
& \left.+T\left(a_{n}\right)^{-(\alpha-1 / 2)}\|P W\|_{\left[-a_{n}, \alpha_{n}\right]}\right\}
\end{aligned}
$$

and so (1.17) follows from (2.9) since $\left|1-\left(x / a_{\beta n}\right)^{2}\right| \geqslant 1-\left(a_{n} / a_{\beta n}\right)^{2} \geqslant$ $C / T\left(a_{n}\right)$ for $|x| \leqslant a_{n}$.

Acknowledgments

Many thanks to the referees of this paper for their very constructive comments and suggestions. My thanks also go to Professor Paul Nevai for pointing out a glaring mistake in the proof of sharpness for $p>q$; and to Professor Tamás Erdélyi for suggesting the present proof. I also thank my supervisor, Professor D. Lubinsky, for his invaluable assistance and encouragement in writing this paper.

References

1. J. Clunie and T. Kövari, On integral functions having prescribed asymptotic growth, II, Canad. J. Math. 20 (1968), 7-20.
2. G. Freud, On Markov-Bernstein type inequalities and their applications, J. Approx. Theory 19 (1977), 22-37.
3. D. S. Lubinsky, Estimates of Freud-Christoffel functions for some weights with the whole real line as support, J. Approx. Theory 44 (1985), 343-379.
4. D. S. Lubinsky, L_{∞} Markov and Bernstein inequalities for Erdös weights, J. Approx. Theory 60 (1990). 188-230.
5. D. S. Lubinsky, "Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös Weights," Pitman Research Notes, Vol. 202, Longmans, Harlow, New York, 1989.
6. D. S. Lubinsky and T. Z. Mthembu, The supremum norm of reciprocals of Christoffel functions for Erdös weights, J. Approx. Theory 63 (1990), 255-266.
7. H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
8. P. Neval and G. Freud, Orthogonal polynomials and Christoffel function, a case study, J. Approx. Theory 48 (1986), 3-167.
9. P. Nevar, "Orthogonal Polynomials," Mem. Amer. Math. Soc., Vol. 18 (213), Amer. Math. Soc., Providence, RI, 1979.
10. P. Neval and V. Totik, Sharp Nikolskii inequalities with exponential weights, Anal. Math. 13 (1987), 261-267.
11. P. Neval and P. Vértesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl. 105 (1985), 26-58.
